
CSS3 Transitions,

Transformations, and

Animations

In the last two chapters we looked at some of the new features and functionality that
CSS3 provides. However, until now, everything we have looked at has been static.
But CSS3 can do more.

At present, chances are, if you need to animate elements on a web page you'll either
write your own JavaScript to perform the required action or turn to a popular
JavaScript library like jQuery to do the heavy lifting. However, someone involved
with CSS3 clearly has issues with JavaScript's ubiquity in this area and they're
looking to encroach on JavaScript's dominance. While CSS3 isn't likely to usurp
jQuery or the like anytime soon, it's perfectly capable of things like smoothing
transitions (for example, on mouse hover) and moving elements around the screen.
This is great news for us, as it means for the growing number of devices sporting
modern browsers (recent smart phones for example), we can use CSS to provide
animations rather than relying on JavaScript. The upshot: you can probably scratch
'learn how to animate elements with jQuery' off the 'to do' list as we can now do
all that fun stuff in pure CSS. As ever, these CSS3 features don't break anything for
browsers lacking the features; they'll just skip over the rules they don't understand
like they weren't there.

In this chapter, we'll cover:

•	 What CSS3 transitions are and how we can use them
•	 How to write a CSS3 transition and its shorthand syntax

•	 CSS3 transition timing functions (ease, cubic-bezier, and so on)

CSS3 Transitions, Transformations, and Animations

[210]

•	 Fun transitions for responsive web sites

•	 What CSS3 transformations are and how we can use them
•	 Understanding different 2D transformations (scale, rotate, skew, translate,

and so on)

•	 Dabbling with 3D transformations
•	 Animating with CSS3 (using keyframes)

What CSS3 transitions are and how we
can use them
When styling hyperlinks in CSS, it's common practice to create a hover state; an
obvious way to make users aware that the item they are hovering over is a link.
They're of less relevance to the growing number of touch screen devices but for
everyone else, they're a great and simple interaction between website and user.

Traditionally, using only CSS, hover states are an on/off affair. There is one state
as the default, that instantly changes to a different state on hover. However, CSS3
transitions, as the name implies, allow us to transition between one state and
another. It's not speciic to hover states but let's start there.

In the previous chapter, we created a CSS3 button with a red gradient background.
This is the CSS3 used (with the additional vendor preixes removed for brevity):

#content a {

 text-decoration: none;

 font: 2.25em /* 36px ÷ 16 */ 'BebasNeueRegular';

 background-color: #b01c20;

 border-radius: 8px;

 color: #ffffff;

 padding: 3%;

 float: left;

 background: linear-gradient(90deg, #b01c20 0%, #f15c60 100%);

 margin-top: 30px;

 box-shadow: 5px 5px 5px hsla(0, 0%, 26.6667%, 0.8);

 text-shadow: 0px 1px black;

 border: 1px solid #bfbfbf;

}

Chapter 7

[211]

Let's add a hover state:

#content a:hover {

 border: 1px solid #000000;

 color: #000000;

 text-shadow: 0px 1px white;

}

And here are the two states, irst the default:

And then here's the hover state:

It's a simple change of text, text-shadow, and border color on hover. So, as you might
imagine, with the current CSS, hovering the mouse over snaps from the irst state
(white text) button to the second (black text); it's an on/off affair. Let's add a little
CSS3 magic to our irst rule:

#content a {

 /*…existing styles…*/

 transition: all 1s ease 0s;

}

Now when we hover over the button, the text, text-shadow, and border color all
transition smoothly from one to the other. You'll notice the transition is applied
to the original element, not the hover state. This is so that different states such as
:active can also have different styles set and enjoy the transition. So remember, the
transition declaration is added to the element it transitions away from. But how do
transitions actually work?

CSS3 Transitions, Transformations, and Animations

[212]

The properties of a transition
A transition can be declared using up to four properties or a single shorthand
declaration including all four:

•	 transition-property: the name of the CSS property to be transitioned
(such as background-color, text-shadow, or all to transition every
possible property).

•	 transition-duration: the length of time over which the transition should
occur (deined in seconds, for example .3s, 2s, or 1.5s).

•	 transition-timing-function: how the transition changes speed during
the duration (for example ease, linear, ease-in, ease-out, ease-in-out,
or cubic-bezier).

•	 transition-delay: an optional value to determine a delay before the
transition commences. Alternatively, a negative value can be used to
commence a transition immediately but part way through its transition
'journey'.

Used separately, the various transition properties can be used to create a transition
as follows:

#content a {

 ...(more styles)...

 transition-property: all;

 transition-duration: 1s;

 transition-timing-function: ease;

 transition-delay: 0s;

}

The transition shorthand property
As we've already seen however, we can roll these individual declarations into a
single, shorthand version:

transition: all 1s ease 0s;

One important point to note when writing the shorthand version is that the irst
timing value given is always taken to be the transition-duration. The second
timing value is taken to be the transition-delay.

Chapter 7

[213]

As ever, it's important to use vendor preixes. For example, a stack of vendor-
preixed versions of the prior shorthand declaration would be as follows:

-o-transition: all 1s ease 0s;

-ms-transition: all 1s ease 0s;

-moz-transition: all 1s ease 0s;

-webkit-transition: all 1s ease 0s;

transition: all 1s ease 0s;

We've placed the non-preixed 'oficial' version last so it will overwrite the others
when browsers have fully implemented the standard.

Limitations of transitions

There are some caveats to using transitions; some properties can't be
transitioned, despite the speciications (even the latest editor's draft
at http://dev.w3.org/csswg/css3-transitions/) saying it
should be possible. For example, the background-gradient property.
However, you can, in theory, transition all these properties (http://
www.w3.org/TR/css3-transitions/#properties-from-css-).

Transition different properties over different periods

of time
Where a rule has multiple properties declared you don't have to transition all of
them in the same way. Consider this rule:

#content a {

 ...(more styles)...

 transition-property: border, color, text-shadow;

 transition-duration: 2s, 3s, 8s;

}

Here we have speciied with the transition-property that we'd like to transition the
border, color, and text-shadow. Then with the transition-duration declaration, we are
stating that the border should transition over 2 seconds, the color over 3 seconds, and
the text-shadow over 8 seconds. The comma-separated durations match the comma-
separated order of the transition properties.

http://www.w3.org/TR/css3-transitions/#properties-from-css-
http://www.w3.org/TR/css3-transitions/#properties-from-css-

CSS3 Transitions, Transformations, and Animations

[214]

Understanding timing functions
Most of the transition properties are self-explanatory. We've covered the list of
properties that can be (or should be!) transitioned. Durations and delays are set
with seconds (for example 2s) so they're simple enough to understand but the one
property that can cause some head scratching is the timing functions. Just what do
ease, linear, ease-in, ease-out, ease-in-out, and cubic-bezier actually do?
Each of them is actually a cubic-bezier-curve—essentially the same as an easing
function. I realize that perhaps doesn't mean much to you either. So… this is one of
those situations where words (and certainly this author's power to wield them well
enough) struggle to offer a satisfactory explanation—much like if you have to give
your other half a satisfactory explanation for why you've forgotten their birthday!
Instead, I recommend you head over to http://cubic-bezier.com/.

http://cubic-bezier.com/

Chapter 7

[215]

This site lets you compare timing functions and see the difference each one makes.
However, even if you can write your own cubic-bezier curves blindfolded (while
also counting backwards from a thousand in Mandarin), the likelihood is, for most
practical situations, it makes little difference. Here's why…

Like any enhancement, it's necessary to employ transition effects subtly. For 'real
world' implementations, transitions that occur over too great a period of time tend to
make a site 'feel' slow. For example, navigation links that take 5 seconds to transition
are going to frustrate, rather than 'Wow!' your users. Therefore, unless there is a
compelling reason to do so, using the default transition (ease) over a short interval
(a maximum of 1 second is my own preference) is often best.

Fun transitions for responsive web sites
Once you become a responsive web design junkie, you'll ind yourself constantly
resizing the browser window on websites you visit to see if it's responsive. Keep in
mind this habit infuriates 'normal' people, so best only do it in private.

A great website I often visit that discusses CSS techniques is Chris Coyier's excellent
http://css-tricks.com. After a re-design I happened to resize the browser
window and smiled knowingly as the different on-screen elements whizzed about
the screen. What magic had Chris employed to bring this effect about? Something
similar to this:

* {

 transition: all 1s;

}

Here, we are using the CSS universal selector * to select everything and then setting
a transition on all elements over 1 second (1s). As we have omitted to specify the
timing function, ease will be used by default and there will be no delay as again,
a default of none is assumed if an alternative value is not speciically added. The
effect? Well, most things (links, hover states, and the like) behave as you would
expect. However, because everything transitions, it also includes any rules within
media queries, so as the browser window is resized, elements sort of low from one
state to the next. Is it essential? Absolutely not! Is it fun to watch and play around
with? Certainly!

CSS3 Transitions, Transformations, and Animations

[216]

CSS3 2D transformations
Despite sounding similar, CSS transformations (both 2D and 3D variants) are
entirely different to CSS transitions. Think of it like this: transitions smooth the
change from one state to another, while transformations are deining what the
element will become. My own (admittedly childish) way of remembering it is
like this:

Imagine a Transformer robot like Optimus Prime. He's a robot that becomes
something else (transforms) over a period of time (the transition) into a truck.

In case that tangent muddied the waters further (or you don't have a clue who
Optimus Prime is) let's just dig in. Let's add a 2D transition to the hover state of the
navigation links on the AND THE WINNER ISN'T site:

nav ul li a:hover {

 transform: scale(1.7);

}

Now, in a modern browser, hovering over a link produces this effect:

We've told the browser that when this element is hovered over, we want the element
to scale to 1.7 times its original value.

Now, if you're attempting to add this rule to an element in Safari, be aware that it
requires the main element to be displayed as a block. For example:

nav ul li a {

 height: 42px;

 text-decoration: none;

 text-transform: uppercase;

 color: black;

 text-shadow: 0 1px 0 hsla(0, 0%, 100%, 1.0);

 font: 1.875em/42px 'BebasNeueRegular';

 display: block;

}

Otherwise nothing happens, which is, you know, rubbish.

Chapter 7

[217]

What can we transform?
There are two groups of CSS3 transforms available: 2D and 3D. 2D variants are
far more widely implemented, browser wise, and certainly easier to write so let's
look at those irst. The CSS3 2D Transforms Module allows us to use the following
transformations:

•	 scale: used to scale an element (larger or smaller)

•	 translate: move an element on the screen (up, down, left, and right)

•	 rotate: rotate the element by a speciied amount (deined in degrees)
•	 skew: used to skew an element with its X and Y co-ordinates

•	 matrix: allows you to move and shape transformations with pixel precision

Let's try each of these and see what we can achieve.

scale
We've already looked at this transform above. However, besides the positive values
we've already used, it's worth knowing that by using values below 1, we can shrink
elements; the following will shrink the element to half its size:

transform: scale(0.5);

translate
transform: translate(40px, 0px);

translate tells the browser to move the element by an amount, deined in either
pixels or percentages. The syntax is applied irst from the left to the right (40px
here) and then from the top to the bottom (0px here so it stays in line with the other
navigation elements). Positive values given within parentheses move the element
right or down; negative values move it left or up. So using this declaration on our
navigation hover state results in this—our link shifting 40 pixels to the right when
hovered over:

CSS3 Transitions, Transformations, and Animations

[218]

rotate
transform: rotate(90deg);

rotate allows you to rotate an element. In this example, we've amended the hover
link to rotate 90 degrees. In the browser, here's what happens:

The value in parentheses should always be in degrees (for example, 90deg).
That doesn't stop you going crazy—you can make elements spin by specifying
a value like the following:

transform: rotate(3600deg);

This will rotate the element 10 times in a complete circle. Practical uses for this
particular value are few and far between but you know, if you ever ind yourself
designing websites for a windmill company it may come in handy!

skew
If you've spent any time working in Photoshop, you'll have a good idea what skew
will do. It allows an element to be skewed on either or both of its axes.

transform: skew(10deg, 2deg);

Setting this on the hover link produces the following effect on hover:

Chapter 7

[219]

The irst value is the skew applied to the X axis (in our example, 10deg), while the
second (2deg) is for the Y axis. Omitting the second value means any value will be
applied to the X axis (horizontal). For example:

transform: skew(10deg);

This is perfectly valid but will only apply skew to the X axis. Values should always
be given in degrees. While positive values always apply clockwise, using negative
values will rotate the element counter-clockwise.

matrix
So, on the subject of over-rated ilms. What's that? You want to know about the CSS3
matrix, not the ilm? Oh, okay…

The matrix transform syntax looks scary:

transform: matrix(1.678, -0.256, 1.522, 2.333, -51.533, -1.989);

It essentially allows you to combine a number of other transforms (scale, rotate,
skew, and so on) into a single declaration. The above declaration results in the
following effect in the browser:

Now, I like a challenge like the best of them (unless, you know, it's sitting
through Moulin Rouge) but I'm sure we can agree that syntax is a bit testing.
It gets worse when you look at the speciication and realize that it involves
mathematics knowledge to fully understand: http://www.w3.org/TR/css3-2d-
transforms/#cssmatrix-interface.

CSS3 Transitions, Transformations, and Animations

[220]

Matrix transformations for cheats and dunces
I'm not a mathematician by any stretch of the imagination so when faced
with the need to create a matrix based transformation, I cheat. If your
mathematical skills are also found wanting, I'd suggest heading over to
http://www.useragentman.com/matrix/.

The Matrix Construction Set website allows you to drag and drop the element
exactly where you want it and then includes good ol' copy and paste code
(including vendor-preixes) for your CSS ile.

http://www.useragentman.com/matrix/

Chapter 7

[221]

transform-origin property
Alongside the aforementioned transformations, you can use the transform-origin
property to amend the point from which transforms are applied:

transform: rotate(45deg);

transform-origin: 20% 20%;

Setting this on our navigation links results in the following when hovered over:

The transform-origin property comes in useful as by default, transformations are
applied to the center of an element. This provides a handy means of offsetting it and
can produce some great results.

Full information on the transform-origin property can be found here:
http://www.w3.org/TR/css3-2d-transforms/#transform-
origin-property

That covers the essentials of 2D transforms. They are far more widely implemented
in the browser landscape than their 3D brethren and when used sensibly, provide
a light-weight means of providing visual lourishes to reward users with modern
browsers.

Read the full speciication on CSS3 2D Transforms Module Level 3 here:
http://www.w3.org/TR/css3-2d-transforms/

Dabbling in CSS3 3D transformations
Although already supported by Webkit browsers (Safari and Chrome) and Firefox
10+, CSS3 3D transforms won't be supported in IE until version 10. However, despite
a lack of support in 'desktop' browsers, thanks to their origin in Webkit, they are well
supported in Android (v3 onwards) and iOS (all versions).

CSS3 Transitions, Transformations, and Animations

[222]

Sufice to say, from this point on, you'll be best off checking your results in a Webkit
based browser such as Chrome or Safari (unless, of course, you're reading this at a
time when your browser of choice does support 3D transformations).

Now, we're just going to dabble in 3D transformations here. They're a vast subject
and the possibilities are virtually ininite. I imagine by the time they are supported
widely, most of us will reach for them to create Carousel effects, rather than relying
on JavaScript solutions from the likes of jQuery. However, until then, let's just open
the lid and take a peek at what's possible.

Let's imagine we're making a simple quiz for the AND THE WINNER ISN'T
website. It will be composed of images of movie posters and you have to guess
whether they are considered 'Hot or Not' by the world's most respected ilm critic
(yep, that's me). Hovering over the images (or tapping on a touch screen) will reveal
the answer.

Here's the relevant section of markup; note that I've omitted the repetition of the
markup for each image as they follow exactly the same format:

<section class="Qcontainer">

 <div class="film">

 <div class="face front">

 </div>

 <div class="face back"><h5>HOT!</h5></div>

 </div>

</section>

And now here's the CSS. Note, as Webkit is the browser with the greatest support for
3D transformations, the declarations here all use that speciic vendor preix. As ever,
when implementing in the real world, vendor-preixes are your friend.

.Qcontainer {

 height: 100%;

 width: 28%;

 position: relative;

 -webkit-perspective: 800;

 float: left;

 margin-right: 2%;

}

.film {

 width: 100%;

 height: 15em;

 -webkit-transform-style: preserve-3d;

 -webkit-transition: 1s;

Chapter 7

[223]

}

.Qcontainer:hover .film {

 -webkit-transform: rotateY(180deg);

}

.face {

 position: absolute;

 -webkit-backface-visibility: hidden;

}

.back {

 width: 66%;

 height: 127%;

 -webkit-transform: rotateY(180deg);

 background: #3b3b3b;

 background: -webkit-linear-gradient(top,
 rgba(0,0,0,0.65) 0%,
 rgba(0,0,0,0) 100%);

 padding: 15%;

}

With that in place, hovering over the relevant image makes the poster lip and the
simple HOT or NOT answer is revealed.

CSS3 Transitions, Transformations, and Animations

[224]

Breaking down the 3D effect
Let's go through the code to understand how this effect is achieved.

The irst important point is to set the perspective on the parent element. This
activates 3D space:

.Qcontainer {

 height: 100%;

 width: 28%;

 position: relative;

 -webkit-perspective: 200;

 float: left;

 margin-right: 2%;

}

The larger this perspective value, the greater the virtual depth of 3D space from
your viewing point. Therefore, for a subtler 3D effect, increase the value. For a more
dramatic effect, decrease it.

Chapter 7

[225]

The next noteworthy point:

.film {

 width: 100%;

 height: 15em;

 -webkit-transform-style: preserve-3d;

 -webkit-transition: 1s;

}

The irst perspective declaration added to the .Qcontainer class only applies to the
irst direct descendent (the div with a class of .film in this example). Therefore, to
pass on the parent's perspective we use the preserve-3d value.

Now, we'll add a rule to lip the .film div when the .Qcontainer section is
hovered over:

.Qcontainer:hover .film {

 -webkit-transform: rotateY(180deg);

}

The next rule deals with hiding the opposite side of the poster when it's lipped:

.face {

 position: absolute;

 -webkit-backface-visibility: hidden;

}

The absolute positioning on the .face is necessary to position it on top of the
.back DIV:

.back {

 width: 66%;

 height: 127%;

 -webkit-transform: rotateY(180deg);

 background: #3b3b3b;

 background: -webkit-linear-gradient(top,
 rgba(0,0,0,0.65) 0%,
 rgba(0,0,0,0) 100%);

 padding: 15%;

}

Finally, we also add a simple rotateY on the .back DIV. Without this, the .back
DIV effectively shows through the front.

And that's all there is to it. Now, hovering over any of the posters lips them in a
rather dramatic fashion.

CSS3 Transitions, Transformations, and Animations

[226]

However, for any non-Webkit browsers the page functionality is decidedly lame:

Well, we can provide an acceptable fallback for non-Webkit browsers with a little
CSS of old:

.front {

 z-index: 5;

}

.Qcontainer:hover .front {

 z-index: 0;

}

First, we set a z-index of 5 on the .front DIV so that it sits above the .back DIV
by default:

.front {

 z-index: 5;

}

Chapter 7

[227]

Now, when the .Qcontainer section is hovered over, we'll set the z-index to 0 so it
once more sits behind the .back DIV:

.Qcontainer:hover .front {
 z-index: 0;
}

Now we get a functional question and answer functionality in non-3D transform
capable browsers, sans the fancy 3D effect.

3D transformations not ready for prime time
In my experience, at present, many of the 3D transforms don't play happily with
percentage sizes (for example, amending the viewport width with the prior example
makes things misbehave severely). So there's often quite a bit of tweaking to be done
to make them play happily within a responsive layout. Furthermore, as support is
currently so limited, 3D transformations seldom offer the most robust solution when
you're building a cross-browser site. So for now, I still err towards jQuery or similar
for this kind of functionality.

CSS3 Transitions, Transformations, and Animations

[228]

The possibilities of CSS 3D transforms are, however, extremely promising and when
browser support is extended, they offer the opportunity to move many of the fancy
effects we currently rely on JavaScript for, to be moved within our stylesheets.

Read about the latest W3C developments on CSS 3D Transforms at
http://dev.w3.org/csswg/css3-3d-transforms/

Animating with CSS3
If you've ever worked with Flash, you'll have an instant advantage when working
with CSS3 animations. CSS3 employs animation keyframing conventions found in
Flash and other timeline based applications.

Animations are also more widely implemented than 3D transforms. They are
supported in Firefox 5+, Chrome, Safari 4+, Android (all versions), iOS (all versions),
and due to be incorporated into Internet Explorer 10.

There are two components to a CSS3 animation; irstly a keyframes declaration and
then using that keyframe declaration in an animation property. Let's take a look.

In the previous section we made a simple lip effect for ilms that I consider HOT or
NOT. Well, the text on the reveal is pretty dull, so let's add a nice pulsing effect to
the answer that's revealed after the poster lips.

Firstly the keyframe rule:

@keyframes warning {

 0% {

 text-shadow: 0px 0px 4px #000000;

 }

 50% {

 text-shadow: 0 0 20px #000000;

 }

 100% {

 text-shadow: 0px 0px 4px #000000;

 }

}

I'm using the non-preixed version of the code here so if things aren't happening
you'll probably need to add a full vendor-preixed stack (@-webkit-keyframes
for example).

Chapter 7

[229]

Let's break this down:

@keyframes warning {

 0% {

 text-shadow: 0px 0px 4px #000000;

 }

 50% {

 text-shadow: 0 0 20px #000000;

 }

 100% {

 text-shadow: 0px 0px 4px #000000;

 }

}

First, we are specifying a @keyframes declaration. We are then giving this particular
keyframes declaration a name—warning in this instance. You can name them
however you like but as these keyframe declarations can be re-used on multiple
elements, name them accordingly.

You can set as many percentage points as you like (for example, 10, 20, 30, 40,
and so on) or if you'd rather, deine the animation with from and to values. Be
warned however that Webkit browsers don't always play happily with from
and to values (preferring 0% and 100%):

@keyframes warning {
 from {
 text-shadow: 0px 0px 4px #000000;
 }
 50% {
 text-shadow: 0 0 40px #000000;
 }
 to {
 text-shadow: 0 0 4px #000000;
 }
}

In this instance I'm altering a text-shadow, starting and ending with the same
distance of 4px but going to 40px blur at 50%.

Now we have declared the keyframe, we can reference it with the animation property:

.back h5 {

 font-size: 4em;

 color: #f2050b;

 text-align: center;

 animation: warning 1.5s infinite ease-in;

}

CSS3 Transitions, Transformations, and Animations

[230]

After specifying the animation property, we deine the particular keyframe rule
we want to use (warning in this case), we then specify the animation-iteration-
count (we've used ininite here so the animation continues continuously) and inally
the timing function (ease-in). A static image obviously fails to do this justice but
hopefully you can imagine the text shadow pulsing back and forth. View this in the
browser at http://www.andthewinnerisnt.com.

The shorthand property can accept all seven animation properties. In addition to
those used in the above example, it's also possible to specify animation-delay (for
example, if you wanted to delay when the animation starts), animation-play-state
(can be set to running or paused to effectively play and pause an animation) and
inally animation-fill-mode, which I confess, I've yet to ind a need to use (the
default is none). Of course you don't need to use the shorthand property; you
can list them individually as follows:

Chapter 7

[231]

animation-name: warning;

animation-duration: 1.5s;

animation-timing-function: ease-in-out;

animation-iteration-count: infinite;

animation-play-state: running;

animation-delay: 0s;

animation-fill-mode: none;

As mentioned previously, it's simple to reuse the animation on other elements. For
example:

nav ul li a:hover {

 animation: warning 1.5s infinite ease-in;

}

This gives our navigation links the same pulsing effect. You can (hopefully) see the
STILLS/PHOTOS link in the screenshot below in the midst of the animation. Try it out
for yourself at http://www.andthewinnerisnt.com.

CSS3 Transitions, Transformations, and Animations

[232]

This is just one very simple example of using CSS animations. As virtually
anything can be key-framed, the possibilities are pretty endless. There are countless
showcases of CSS3 animation techniques around the web. Pages like http://
webdesignerwall.com/trends/47-amazing-css3-animation-demos should give
you more than enough inspiration to be getting on with.

Read about the latest developments on CSS3 Animations at
http://dev.w3.org/csswg/css3-animations/.

Putting CSS3 transformations and animations
together
Let's try one more thing to lex our CSS3 muscles. I'd like to try placing all the aside
sidebar images at varying angles and then animating them. The aim is to have them
'shake' when the page is irst visited. Here's the markup for the sidebar:

<aside>

 <div role="complementary">

 <div class="sideBlock unSung">

 <h1>Unsung heroes...</h1>

 <img src="img/midnightRun.jpg"
 alt="Midnight Run" />

 <img src="img/wyattEarp.jpg"
 alt="Wyatt Earp" />

 </div>

 </div>

 <div role="complementary">

 <div class="sideBlock overHyped">

 <h1>Overhyped nonsense...</h1>

 <img src="img/moulinRouge.jpg"
 alt="Moulin Rouge" />

 <img src="img/kingKong.jpg"
 alt="King Kong" />

 </div>

 </div>

</aside>

http://webdesignerwall.com/trends/47-amazing-css3-animation-demos
http://webdesignerwall.com/trends/47-amazing-css3-animation-demos
http://dev.w3.org/csswg/css3-animations/
http://dev.w3.org/csswg/css3-animations/

Chapter 7

[233]

Now let's create the CSS3 to make this work. First, let's create a new keyframe
declaration called swing:

@-webkit-keyframes swing {

 from {

 transform: rotate(3deg);

 }

 20% {

 transform: rotate(7deg);

 }

 60% {

 transform: rotate(10deg);

 }

 80% {

 transform: rotate(7deg);

 }

 to {

 transform: rotate(3deg);

 }

}

The animation will use the 2D rotate transform to move the item from 3 degrees to 10
and back again. And here's how the animation property is added:

#quiz .unSung a:nth-child(odd) img {

 transform: rotate(3deg);

 animation: swing 0.1s 5 ease-in;

}

#quiz .unSung a:nth-child(even) img {

 transform: rotate(-3deg);

 animation: swing 0.1s 5 0.3s ease-in;

}

#quiz .overHyped a:nth-child(odd) img {

 transform: rotate(3deg);

 animation: swing 0.1s 5 0.2s ease-in;

}

#quiz .overHyped a:nth-child(even) img {

 transform: rotate(-3deg);

 animation: swing 0.1s 5 0.5s ease-in;

}

Let's break this down. Firstly by relying on CSS speciicity we can target these rules
only at the QUIZ page (which has a <body id="quiz"> tag).

CSS3 Transitions, Transformations, and Animations

[234]

Before adding the animation property, I want to set a default rotate transform so that
they remain off-kilter when the animation completes. I don't want them all at the
same angle—so let's use the nth-child selector we learned about in Chapter 5, CSS3:
Selectors, Typography, and Color Modes to select the odd and even images and apply
different rotation transforms to them:

 #quiz .unSung a:nth-child(odd) img {

 transform: rotate(3deg);

 animation: swing 0.1s 5 ease-in;

}

#quiz .unSung a:nth-child(even) img {

 transform: rotate(-3deg);

 animation: swing 0.1s 5 0.3s ease-in;

}

#quiz .overHyped a:nth-child(odd) img {

 transform: rotate(3deg);

 animation: swing 0.1s 5 0.2s ease-in;

}

#quiz .overHyped a:nth-child(even) img {

 transform: rotate(-3deg);

 animation: swing 0.1s 5 0.5s ease-in;

}

Then the animation property is added for each instance. You'll notice slight
variations in each of the rules. The shorthand property also takes into account that
the second time value given (0.5s) is assigned to the animation delay. By utilizing
this value we can effectively ire off each different instance separately.

#quiz .overHyped a:nth-child(even) img {

 transform: rotate(-3deg);

 animation: swing 0.1s 5 0.5s ease-in;

}

Chapter 7

[235]

Again, when writing about animations, it's a little dificult to convey the effect. If
you're not near an Internet connection, the best I can tell you is that the ilms rapidly
shake from side to side and then settle off-kilter as shown in the following image:

CSS3 Transitions, Transformations, and Animations

[236]

Summary
It would be entirely possible to ill multiple books covering the possibilities of CSS
transformations, transitions, and animations. However, hopefully, by dipping your
toe in the water with this chapter you'll be able to pick up the basics and run with
them. Ultimately, by embracing the new features and techniques of CSS3 the aim
is to make a responsive design even leaner and richer than ever by using CSS3,
rather than JavaScript for some of the fancier aesthetic enhancements. In this chapter
we've learned what CSS3 transitions are and how to write them, got a handle on
timing functions like 'ease' and 'linear', and then used them to create simple but fun
effects with our responsive design. We then learned all about 2D transformations
like scale and skew and then how to use them in tandem with transitions. We also
looked briely at 3D transformations before learning all about the power and relative
simplicity of CSS animations. You'd better believe our CSS3 muscles are growing!

However, if there's one area of site design that I always avoid where possible (as
desperately as I avoid Munich or King Kong if they're showing), it's making forms. I
don't know why, I've just always found making them a tedious and frustrating task.
Imagine my joy when I learned that HTML5 and CSS3 can make the whole form
building, styling, and even validating (yes, validating!) process easier than ever
before. I was quite joyous. As joyous as you can be about building web forms
that is. In the next chapter I'd like to share this knowledge with you.

